Preparation of GST Inhibitor Nanoparticle Drug Delivery System and Its Reversal Effect on the Multidrug Resistance in Oral Carcinoma
نویسندگان
چکیده
During the chemotherapy of cancer, drug resistance is the first issue that chemotherapeutic drugs cannot be effectively used for the treatment of cancers repeatedly for a long term, and the main reason for this is that tumor cell detoxification is mediated by GSH (glutathione) catalyzed by GST (glutathione-S-transferase). In this study, a GST inhibitor, ethacrynic acid (ECA), was designed to be coupled with methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) by disulfide bonds to prepare methoxy poly(ethylene glycol)-poly(lactide)-disulphide bond-mthacrynic acid (MPEG-PLA-SS-ECA) as a carrier material of the nanoparticles. Nanoparticles of pingyangmycin (PYM) and carboplatin (CBP) were prepared, respectively, and their physicochemical properties were investigated. The ECA at the disulfide could be released in the presence of GSH, the pingyangmycin, carboplatin and ECA were all uniformly released, and the nanoparticles could release all the drugs completely within 10 days. The half maximal inhibitory concentration (IC50) of the prepared MPEG-PLA-SS-ECA/CBP and MPEG-PLA-SS-ECA/PYM nanoparticles in drug-resistant oral squamous cell carcinoma cell lines SCC15/CBP and SCC15/PYM cells was 12.68 μg·mL-¹ and 12.76 μg·mL-¹, respectively; the resistant factor RF of them in the drug-resistant cells were 1.51 and 1.24, respectively, indicating that MPEG-PLA-SS-ECA nanoparticles can reverse the drug resistance of these two drug-resistant cells.
منابع مشابه
Preparation of SLN-containing Thermoresponsive In-situ Forming Gel as a Controlled Nanoparticle Delivery System and Investigating its Rheological, Thermal and Erosion Behavior
AbstractVarious nanoparticles have been investigated as novel drug delivery systems, including solid lipid nanoparticles (SLNs). Due to their rapid clearance from systemic circulation, nanoparticles do not provide sustained action in most cases. Different strategies have been employed to overcome this problem. In this direction, the present study introduces erodible in-situ forming gel systems ...
متن کاملPreparation of SLN-containing Thermoresponsive In-situ Forming Gel as a Controlled Nanoparticle Delivery System and Investigating its Rheological, Thermal and Erosion Behavior
AbstractVarious nanoparticles have been investigated as novel drug delivery systems, including solid lipid nanoparticles (SLNs). Due to their rapid clearance from systemic circulation, nanoparticles do not provide sustained action in most cases. Different strategies have been employed to overcome this problem. In this direction, the present study introduces erodible in-situ forming gel systems ...
متن کاملConiferyl Ferulate, a Strong Inhibitor of Glutathione S-Transferase Isolated from Radix Angelicae sinensis, Reverses Multidrug Resistance and Downregulates P-Glycoprotein
Glutathione S-transferase (GST) is the key enzyme in multidrug resistance (MDR) of tumour. Inhibition of the expression or activity of GST has emerged as a promising therapeutic strategy for the reversal of MDR. Coniferyl ferulate (CF), isolated from the root of Angelica sinensis (Oliv.) Diels (Radix Angelicae sinensis, RAS), showed strong inhibition of human placental GST. Its 50% inhibition c...
متن کاملNumerical Simulation of Fluid Flow over a Ceramic Nanoparticle in Drug Delivery System
In this work, for better understanding of drug delivery systems, blood flow over a ceramic nanoparticle is investigated through microvessels. Drug is considered as a nanoparticle coated with the rigid ceramic. Due to the low characteristic size in the microvessel, the fluid flow is not continuum and the no-slip boundary condition cannot be applied. To solve this problem lattice Boltzmann method...
متن کاملβ-casein nanovehicles for oral delivery of chemotherapeutic drug combinations overcoming P-glycoprotein-mediated multidrug resistance in human gastric cancer cells
Multidrug resistance (MDR) is a primary obstacle to curative cancer therapy. We have previously demonstrated that β-casein (β-CN) micelles (β-CM) can serve as nanovehicles for oral delivery and target-activated release of hydrophobic drugs in the stomach. Herein we introduce a novel nanosystem based on β-CM, to orally deliver a synergistic combination of a chemotherapeutic drug (Paclitaxel) and...
متن کامل